The Runez Compression Algorithms

In January of 2020 I set about writing a pair of naïve, lossless, compression algorithms inspired by a series of conversations over coffee with a good friend.

These algorithms are very naïve, but simple structurally and to that end I will attempt to convey the implementation.

There are two algorithms, runez and runez2.

The runez2 algorithm is a strictly superior successor \(^ \dagger\) to runez with the primary improvement being that there is no unique character limit, which will be explained later.

The name ‘runez’ is inspired by the fact that this algorithm attempts to compress utf-8 characters, or, runes. The ‘z’ implies the compression and looks cool ☺.

The standard archive suffix for runez is .rz and .rz2 for runez2.

Usage

The best exposition is one you can play with yourself, presuming you have go installed, you can play with the runez algorithms as follows using the mac.txt file found in the runez2 repository.

The plan9port wc(1) is used as it supports the counting of valid utf-8 characters. The plan9port wc command is called explicitly using the plan9port 9 program to circumvent the standard $PATH calling convention.

The runez family tools operate using standard input and standard output and compress by default.

The runez family algorithms assume that they can read the entirety of their input file into memory.

$ runez -h
Usage of runez:
  -D	Chatty debug mode
  -c	Explicit compress mode
  -d	De-compress mode
$
$ runez2 -h
Usage of runez2:
  -D	Chatty debug mode
  -c	Explicit compress mode
  -d	De-compress mode
$

Compression

Runez:

Note the deliberate truncation of the larger mac.txt from the runez2 repository.

$ sed 5q mac.txt | runez > mac.rz
$ sed 5q mac.txt | 9 wc -r
    195
$ 9 wc -c mac.rz mac.txt
    290 mac.rz
   3550 mac.txt
   3840 total
$

What happens if you don’t truncate the file?

Runez2:

$ runez2 < mac.txt > mac.rz2
$ 9 wc -r mac.txt
   1950 mac.txt
$ 9 wc -c mac.txt mac.rz2
   3550 mac.txt
   2030 mac.rz2
   5580 total
$

Decompression

Runez:

$ runez -d < mac.rz
Моето летачко возило е полно со јагули
Моето летачко возило е полно со јагули
Моето летачко возило е полно со јагули
Моето летачко возило е полно со јагули
Моето летачко возило е полно со јагули
$

Runez2:

$ runez2 -d < mac.rz2
Моето летачко возило е полно со јагули
Моето летачко возило е полно со јагули
Моето летачко возило е полно со јагули
Моето летачко возило е полно со јагули
Моето летачко возило е полно со јагули
Моето летачко возило е полно со јагули
Моето летачко возило е полно со јагули
Моето летачко возило е полно со јагули
Моето летачко возило е полно со јагули
Моето летачко возило е полно со јагули
Моето летачко возило е полно со јагули
Моето летачко возило е полно со јагули
Моето летачко возило е полно со јагули
Моето летачко возило е полно со јагули
Моето летачко возило е полно со јагули
Моето летачко возило е полно со јагули
Моето летачко возило е полно со јагули
Моето летачко возило е полно со јагули
Моето летачко возило е полно со јагули
Моето летачко возило е полно со јагули
Моето летачко возило е полно со јагули
Моето летачко возило е полно со јагули
Моето летачко возило е полно со јагули
Моето летачко возило е полно со јагули
Моето летачко возило е полно со јагули
Моето летачко возило е полно со јагули
Моето летачко возило е полно со јагули
Моето летачко возило е полно со јагули
Моето летачко возило е полно со јагули
Моето летачко возило е полно со јагули
Моето летачко возило е полно со јагули
Моето летачко возило е полно со јагули
Моето летачко возило е полно со јагули
Моето летачко возило е полно со јагули
Моето летачко возило е полно со јагули
Моето летачко возило е полно со јагули
Моето летачко возило е полно со јагули
Моето летачко возило е полно со јагули
Моето летачко возило е полно со јагули
Моето летачко возило е полно со јагули
Моето летачко возило е полно со јагули
Моето летачко возило е полно со јагули
Моето летачко возило е полно со јагули
Моето летачко возило е полно со јагули
Моето летачко возило е полно со јагули
Моето летачко возило е полно со јагули
Моето летачко возило е полно со јагули
Моето летачко возило е полно со јагули
Моето летачко возило е полно со јагули
Моето летачко возило е полно со јагули
$

Runez the first

Design

Specification: https://github.com/henesy/runez/blob/master/spec.md

Runez takes a series of valid utf-8 characters, which permits the ASCII range, and compacts them into a little-endian binary archive file.

The file consists of a table where each row encodes information about one rune, a valid utf-8 character.

A row takes the form of at least 3 columns:

[number of position : uint8] [rune : int32] [position : uint8 …]

Note that the ellipses ‘…’ implies that there can be be multiple positions, or offsets, a rune can occupy within a file.

For example, given the string:

αβξαβξ

The table would resemble:

2 α 0 3
2 β 1 4
2 ξ 2 5

If we perform a small calculation we can see that the size of the input file is 6 int32 values, which are a total of \( 4 * 6 = 24\) bytes. The output file is 3 int32 values and 9 uint8 values totalling \( 3 * 4 + 9 = 21 \) bytes. In total, this input yields 3 bytes of compression.

The fatal assumption made by runez is that there are no more than \( (\oplus uint8(0) = 255)+1 = 256 \) total runes present in the input file.

This implies that runez can only compress files consisting of 256 characters or less, which is not very useful.

The following function expresses the size of the final archive size ( \(\sigma\) ) in bytes:

$$ \sigma = \sum \forall r{1 + 4 + n_r} $$

We can apply this formula on the mac.txt example from earlier to calculate the size of the final archive.

The file consists of one line of 39 runes repeated across 5 lines:

Моето летачко возило е полно со јагули\n

The set of 19 unique runes:

$$ r \isin R{nl, ␣, М, о, е, т, л, а, ч, к, в, з, и, п, с, ј, г, у, н} $$

$$ R \implies bookkeeping_\sigma = (1 + 4) * 19 = 95\ bytes $$

$$ positions_\sigma = 5 * 39 = 195 $$

$$ \sigma = bookkeeping_\sigma + positions_\sigma = 95 + 195 = 290 $$

$$ \therefore 290\ bytes $$

We can validate this manually:

$ wc -c mac.rz
290 mac.rz
$

The space savings shown here is \( 1- \frac{290}{355} = 0.18 = 18\% \) .

Implementation

Compression

Function definition: https://github.com/henesy/runez/blob/30368d63a423af444da1017f5317482222e9a713/main.go#L57

Runez begins compression by building a hashmap, mapping a rune to a list of uint8’s.

dict := make(map[rune]*list.List)

Each rune from the input file is then iterated on sequentially, with their offset from the beginning of the file, starting at 0, being indexed as i.

Each rune found will be checked for presence within the map.

if dict[r] == nil {
	dict[r] = list.New()
}

If the rune is found in the map as existing, the current rune offset is prepended to the list for said rune.

dict[r].PushFront(uint8(i))

If the rune is not found in the map, a list is allocated for the rune and the current rune offset is prepended to the list for said rune.

After all the runes have been read from the input file, the map is then iterated over and rows are generated for the output table.

The number of positions is derived from the list length.

The rune is derived from the map key during iteration.

The positions are extracted starting from the front of the list.

We can see the relevant encoding of the position count, rune, and positions respectively as per:

err := binary.Write(w, binary.LittleEndian, pc)

err = binary.Write(w, binary.LittleEndian, r)

for p := l.Front(); p != nil; p = p.Next() {
	err := binary.Write(w, binary.LittleEndian, byte(p.Value.(uint8)))
	
}

Decompression

Function definition: https://github.com/henesy/runez/blob/30368d63a423af444da1017f5317482222e9a713/main.go#L116

Runez begins decompression by allocated a hashmap mapping a rune to a slice of uint8’s.

dict := make(map[rune][]uint8)

Runez will read from the input file until EOF is reached.

Each iteration of the reading process will extract a position count, rune, and a number of positions as defined by the position count.

err := binary.Read(r, binary.LittleEndian, &pc)

err = binary.Read(r, binary.LittleEndian, &ru)

for i := uint8(0); i < pc; i++ {
	var p uint8

	err = binary.Read(r, binary.LittleEndian, &p)
	

	dict[ru][i] = p
}

The total number of runes based on the sum of position counts is stored for later use.

sum := 0

sum += int(pc)

The slice is allocated in size of ‘position count’ number of positions.

dict[ru] = make([]uint8, pc)

After all runes have been read, the map is iterated over and inside said iteration, the slice of positions is iterated over.

A Pair type is used to conjoin a rune to a given position.

type Pair struct {
	R rune
	P uint8
}

A slice of pairs is allocated proportional to the size of the aforementioned sum value.

master := make([]Pair, 0, sum)

Each position iterated over is placed in a Pair with its parent rune and the couple is appended to the master slice of pairs.

for ru, s := range dict {
	for _, p := range s {
		master = append(master, Pair{ru, p})
	}
}

After all position and rune pairs have been processed, the slice of all pairs is sorted by position value, starting from 0.


type ByPosition []Pair

func (a ByPosition) Len() int           { return len(a) }
func (a ByPosition) Swap(i, j int)      { a[i], a[j] = a[j], a[i] }
func (a ByPosition) Less(i, j int) bool { return a[i].P < a[j].P }

sort.Sort(ByPosition(master))

The sorted slice of pairs is then emitted to standard output.

for _, pair := range master {
	w.Write([]byte(string(pair.R)))
}

Runez the second

Specification: https://github.com/henesy/runez2/blob/master/spec.md

Design

Runez2 takes a series of valid utf-8 characters, which permits the ASCII range, and compacts them into a little-endian binary archive file.

The file consists of two parts, a preamble which lists all the unique runes in a specific order and a body which is separated from the preamble by a null rune and consists of single byte (uint8) values indicating the unique rune which should be substituted into position for said single byte value.

The archive format is thus structured as follows:

[rune : int32]
…
[\0 : int32]
[N : uint8]

Note that the ellipses ‘…’ implies that there can be many runes prior to the null divider.

For example, given the string:

αβξαβξ

The file would resemble:

αβξ
\0
0 1 2 0 1 2

The core assumptions made by Runez2 is that the whole file can be read into memory and that there are no more than \( (\oplus uint8(0) = 255)+1 = 256 \) unique runes.

Additionally, files compressed by runez2 cannot contain null runes (\0) as this is reserved as the dividing point for the preamble.

There is an implied maximum compression ratio offered by runez2.

The following function expresses the size of the final archive size ( \(\sigma\) ) in bytes:

$$ \sigma = 4 + \sum \forall r{n_r + 4 , r \neq \empty} $$

Note that the function for finding the maximum potential size in bytes of the plaintext utf-8 is:

$$ \sigma = \sum \forall r { n_r * 4 } $$

Note that in practice, due to how utf-8 text encoding works, the size in bytes of the plaintext is most likely much smaller than this number.

We can apply the former formula on the mac.txt example from earlier to calculate the size of the final archive.

The file consists of one line of 39 runes repeated many times:

Моето летачко возило е полно со јагули\n

The set of 19 unique runes:

$$ r \isin R{nl, ␣, М, о, е, т, л, а, ч, к, в, з, и, п, с, ј, г, у, н} $$

$$ R \implies preamble_\sigma = 4 + (4 * 19) = 80\ bytes $$

$$ body_\sigma = lines_n * linerunes_n = 50 * 39 = 2030\ bytes $$

$$ \sigma = preamble_\sigma + body_\sigma $$

$$ \therefore 2030\ bytes $$

We can validate this manually:

$ wc -c mac.rz2
2030 mac.rz2
$

The space savings shown here is \( 1- \frac{2030}{3550} = 0.43 = 43\% \) .

This ratio is indicative of the maximum space savings of this algorithm as illustrated by compressing a much larger document, a utf-8 text transcription of the Quran:

$ wc -c quran.txt
1344086 quran.txt
$ runez2 < quran.txt > quran.rz2
$ wc -c quran.rz2
733387 quran.rz2
$

The space savings shown is \( 1- \frac{733387}{1344086} = 0.45 = 45\% \) . I do not believe that the ratio improves significantly beyond this point.

Disclaimer: I am not a mathematician, these formulae are an approximation of what I remember from university ☺.

The assumptions make runez2 insufficient for languages such as Mandarin in applications which possess a number of distinct runes greater than 256, which is most applications in my experience, but is sufficient in all applications for alphabets such as Arabic, Cyrillic, etc.

Implementation

Compression

Function definition: https://github.com/henesy/runez2/blob/98adfdfacd54c540751e4062e581143576e5344a/main.go#L80

Runez2 begins by beginning a hashmap, mapping a rune to a uint8.

The uint8 mapped value is the indexed offset of a given rune in the order the runes were found, and will be emitted.

A list is made to push the rune index values into to represent the structure of the text where each rune index value is a shorthand reference to the rune that should occupy the index values.

dict := make(map[rune]uint8)
runes := list.New()

As runes are found from the input file they are added into the map and pushed, in order, into the list.

if i <= 0 {
	// Handle the base case explicitly
	dict[ru] = uint8(i)
	i++
	first = ru
} else {
	// 0 means the rune isn't indexed - kind of a hack
	if dict[ru] <= 0 && ru != first {
		dict[ru] = uint8(i)
		i++
	}
}

// Push the i-value for the rune
runes.PushBack(dict[ru])

When all the runes have been read, a slice is allocated to store a table of runes, the map is effectively reversed and the relevant i‘th position for a rune is where the rune from the map is stored.

for ru, i := range dict {
	
	table[i] = ru
}

The table is then iterated over and the runes are emitted in order from the table as the preamble of the archive.

for i := 0; i < len(table); i++ {
	
	err := binary.Write(w, binary.LittleEndian, table[i])
	
}

The preamble is terminated with a full null rune.

err := binary.Write(w, binary.LittleEndian, rune(0))

The list of rune index values is then iterated over to emit the body of the document.

for p := runes.Front(); p != nil; p = p.Next() {
	err := binary.Write(w, binary.LittleEndian, byte(p.Value.(uint8)))
	
}

Decompression

Function definition: https://github.com/henesy/runez2/blob/98adfdfacd54c540751e4062e581143576e5344a/main.go#L161

A table is allocated to store the preamble runes read in from the input file.

The table is allocated with a maximum capacity of \( (\oplus uint8(0) = 255)+1 = 256 \) runes.

var table []rune

table = make([]rune, 0, int(^uint8(0)))

The preamble of runes are then read in and stored in order. Upon reaching a null rune, the preamble is terminated.

for {
	var ru rune

	err := binary.Read(r, binary.LittleEndian, &ru)
	

	if ru == 0 {
		
		break
	}

	table = append(table, ru)
}

The indices are then read from the body of the archive, in order, and the rune value for the relevant index is substituted to restore the original content of the input, which is emitted.

for {
		var i uint8

		err := binary.Read(r, binary.LittleEndian, &i)
		
		w.Write([]byte(string(table[i])))
}

Conclusions

These algorithms were very fun to talk about and write in a casual manner, but are hardly sufficient for any serious compression use and consciously ignore more optimal programming patterns.

The most valuable take-away from the runez algorithms is that they are simple to implement, reason about, and illustrate a method of compression which may prove valuable for educational purposes, I hope ☺.

I’m sure someone has already thought of these methods since they’re so simple, but I haven’t stumbled across these storage formats yet in the wild. Feel free to let me know so I can cite the originals for further reading!

Source

\(^ \dagger\) — unless you want null runes.